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1 Coupled layered intrusion-melt model

In this section, we describe the coupled layered intrusion-melt model referred to in the
main text. The setup is shown schematically in figure 1.

1.1 Layered intrusion model

The layered intrusion model is as described by [1] and [2], albeit with a variable channel
thickness. The ‘along grounding zone’ (transverse) average behaviour of the subglacial
hydrological system is considered as a two layer system in which cold, fresh subglacial
discharge from upstream of the grounding zone is underlain by warm, saline ocean
water. These two layers are treated as immiscible (except for the exchange of heat and
salt, see below). The grounding zone is inclined at an angle θ to the horizontal, along
which the x-axis is aligned. The layer-averaged velocity and thickness of the warm and
cold layers are denoted by ui(x, t) and hi(x, t) for i = 1, 2, respectively (supplementary
figure 1). Far upstream of the grounding zone, the subglacial network is assumed to
have an average thickness H∞ and fresh water flow velocity U∞. Conservation of mass
of the two layers is expressed by

∂h1

∂t
+

∂

∂x
(u1h1) = 0, (1)

∂h2

∂t
+

∂

∂x
(u2h2) = 0, (2)

where h = h1 + h2 is the total channel thickness, and qi = hiui, i = 1, 2 is the
flux in layer i. Note that (1)–(2) results from assuming negligible fresh water input
via melting into the fresh water layer. Although melting is important in altering the
thickness of the subglacial channel, the water input due to this melting is insignificant
compared to the flux of water from upstream. For example, a typical value of the
upstream subglacial flux is U∞H∞ ≈ 10−3 m2 s−1, while the total input from melting
is on the order of

∫
ṁ ≈ 10−4m2 s−1, where the integral is taken over the horizontal

lengthscale. (More generally, taking the horizontal lengthscale H∞/cd as identified
below, the ratio between upstream subglacial flux and total input from melting is on
the order of Stc/L∆T/cd ∼ 10−2, where variables are as defined in the main text.)

Momentum conservation in each layer requires

∂u1

∂t
+ u1

∂u1

∂x
+

1

ρ

∂P

∂x
+

ci|u1 − u2|(u1 − u2)

h1
+

cdu
2
1

h1
= 0, (3)

∂u2

∂t
+ u2

∂u2

∂x
+

1

ρ

∂P

∂x
− ci|u1 − u2|(u1 − u2)

h2
+

cdu
2
2

h2
+ g′

(
∂h2

∂x
+ tan θ

)
= 0. (4)

where P is the barotropic pressure within the channel, ci is the coefficient of interfa-
cial drag between the two layers, and cd is the coefficient of wall drag. These two drag
coefficients parametrize the behaviour in the transverse (along grounding line) direc-
tion, with high values of cd corresponding to strong wall-fluid interactions (and vice
versa for low cd) and high values of ci corresponding to strong resistance between the
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layers. In (3)–(4), g′ = g∆ρ/ρ0 is the reduced gravity, with g the gravitational accel-
eration, ∆ρ the density difference between the two layers, and ρ0 a reference density.
We assume that the density difference between the two layers is constant.

For a given channel thickness h(x, t), the system (1)–(4), alongside the geometric
constraint h = h1 + h2, are a system of five equations for the five unknowns u1, u2,
h1, h2, and P . This system is closed with boundary conditions: firstly, the thickness
and velocity of the upstream subglacial hydrological network are prescribed:

u1 = U∞, h1 = H∞ as x → −∞. (5)

Secondly, the upper-layer must be at the subcritical-to-supercritical transition at the
channel entrance [2]

u1√
g′h1

= 1 at x = 0. (6)

The boundary condition (6) arises because the freshwater flow becomes unconfined as
it leaves the region and hence its behaviour is expected to transition from subcritical
to supercritical there (see [2] for a full description of this boundary condition).

Following [2] and [1], the system (1)–(4) is simplified by making the assumption
that the flow in both layers flow is steady (i.e. all time derivatives in (1)–(4) are
ignored). Unlike the models of [2] and [1], our model has another timescale in it, namely
that on which the confining channel geometry changes. The relevant timescale for
flow in the channel (of a given width) to reach equilibrium is the advective timescale
L/U∞, where L = H∞/cd is the lengthscale of the channel, while the timescale over
which the geometry evolves (see §1.3 below) is the ice advection timescale L/V . This
latter timescale is typically 104 times larger than the former, so it is reasonable to
treat the hydraulic equations (3)–(4) as quasi-steady. A result of assuming this quasi-
steady state is that the average velocity of the lower layer must be zero (u2 = 0). (In
fact, there is likely some recirculation of fluid within the lower layer – inwards along
the bottom and outwards along the top – but there is no net horizontal flow.)

Noting that the flux of fluid in the fresh layer is constant as a result of the quasi-
steady assumption, i.e. q1 = u1h1 = U∞H∞ = q∞), and taking the difference of (3)–
(4) (in which the barotropic pressure gradient cancels out), we obtain a single ODE
for h1:[(

U∞√
g′h1

)2

− 1

]
∂h1

∂x
=

(
U∞√
g′h1

)2(
cd + ci

h

h− h1

)
−
(
tan θ +

∂h

∂x

)
. (7)

This equation is identical to that considered by [1], albeit that the channel width h
is spatially and temporally variable and the upper layer thickness h1 is temporally
variable.

1.2 Melting and channel evolution

Flow through the grounding-zone feeds back on the channel shape via melting of the
upper surface at a rate ṁ(x, t). Since grounding zones are long and thin, this melt
rate can reasonably be assumed to apply perpendicular to the basal slope.
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We apply the so-called ‘two equation formulation’ for melting. The two equations
refer to a liquidus condition and approximate heat balance,

Tf (S, zb) = Tref + λzb − ΓS, (8)

ṁ {L+ cs [Tf (S, zb)− Ti]} = Stu∗c [T − Tf (S, zb)] , (9)

respectively. Here Tref = 8.32 × 10−2◦C is a reference temperature, λ = 7.61 ×
10−4◦C m−1 is the liquidus slope with depth, Γ = 5.73× 10−2◦C is the liquidus slope
with salinity, zb is the local depth, L = 3.35× 105 J kg−1 is the latent heat of fusion
of seawater, cs = 2.009 × 103 J kg ◦C−1 is the specific heat capacity of ice, Ti is the
internal ice temperature, u∗ is the velocity outside a viscous boundary layer adjacent
to the ice-ocean interface, c = 3.974 × 103 J kg ◦C−1 is the specific heat capacity
of water, and T and S are the temperature and salinity outside the viscous bound-
ary layer, respectively. (Values quoted here are standard values, assumed constant,
from [3, 4].) The Stanton number St is the ratio between the thermal flux into the ice-
ocean interface and the thermal capacity of this fluid, which parametrizes exchange
across a boundary layer at the ice-ocean interface [5]; mathematically, this can be
expressed as St = H/(ρuc), where H is the convective heat transfer coefficient, ρ is
the fluid density, and u is the velocity of the fluid. We take the Stanton number to be
constant, as is standard [e.g. 3, 6, 7].

Since the local freezing temperature and internal ice temperature are within a
few degrees of each other, then |Tf (S, zb) − Ti| ≪ L/c and the second of (9) can be
approximated by

Lṁ = Stcu∗τ, (10)

where
τ = T − Tf (S, zb) (11)

is the local thermal driving. By dividing both sides of (10) by L, we obtain equation
(2) in the methods section of the main text.

We take the freshwater layer velocity, which is the layer adjacent to the ice-oceean
interface, as the boundary layer velocity, i.e. u∗ = u1.

We take a simple model for the channel temperature and salinity, assuming that
these quantities are equal to the depth-weighted average of the two layers:

T = ϕTD + (1− ϕ)TO, (12)

S = ϕSD + (1− ϕ)SO (13)

where TD and SD are the temperature and salinity of the subglacial discharge layer,
respectively, T0 and S0 are the temperature and salinity of the ocean layer, and ϕ = h1

h
is the cross-channel fraction occupied by the freshwater layer.

We assume that the subglacial discharge layer consists entirely of freshwater at the
local freezing point, and therefore take

Sd = 0, (14)

TD = Tref + λzb. (15)
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Note that (15) arises from (14) in conjunction with the liquidus condition (8).
Inserting (12)–(15) into (11), we obtain the thermal driving

τ = (1− ϕ) [TO − TD + ΓSO] . (16)

To close the model, we must describe how the channel geometry responds to melt-
ing. With the assumption that the ice above the channel has constant velocity V (a
reasonable assumption given the long, O(10 s) kms on which ice sheet velocities vary),
the kinematic boundary condition on the upper surface of the channel requires:

∂h

∂t
+ V

∂h

∂x
= ṁ. (17)

As initial conditions, we take a configuration of parallel channel walls: h(x, t = 0) =
1, which is the configuration considered by [1] and [2]. We are primarily interested in
the final configuration; as we show in §2, the steady solution, should it exist, is unique
and therefore independent of the initial condition used.

With an initial condition specified, the timestepping process is as follows: for the
given channel thickness h(x, t), we use equation (7) to determine the freshwater water
layer thickness h1 (at the first timestep, when the channel walls are parallel, this is
the solution described by [1] and [2]) and thus the thermal driving from (12). The
freshwater layer velocity is then determined via conservation of mass (h1u1 = H∞U∞)
and the melt determined using (10). The thickness is then updated using (17), and
the procedure repeated.

1.3 Non-dimensionalization

The problem (7), (10), (17) is non-dimensionalized by introducing dimensionless
variables (denoted with hats):

ĥ1 =
h1

H∞
, ĥ =

h

H∞
, x̂ =

cd x

H∞
, t̂ =

t

T
. (18)

The scales introduced are based on a horizontal lengthscale H∞/cd and the melting
timescale T = H∞L/(U∞Stc∆T ), where ∆T = TO+ΓSO−TD is the thermal forcing.

After inserting dimensionless variables (18), the channel flow equation (7) becomes(
F 2

ĥ3
1

− 1

)
∂ĥ1

∂x̂
=

F 2

ĥ3
1

(
1 + C

h

ĥ− ĥ1

)
−

(
S +

∂ĥ

∂x̂

)
, (19)

where F = U∞/
√
g′H∞ is the upstream Froude number, S = tan θ/cd is the rescaled

bed slope, and C = ci/cd is a rescaled drag coefficient.
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After combining the melt model (10) and the kinematic condition (17), and
inserting dimensionless variables (18), we obtain

∂ĥ

∂t̂
+

1

M

∂ĥ

∂x̂
=

1

ĥ1

(
1− ĥ1

ĥ

)
(20)

where

M =
U∞

V

St

Cd

∆T

L/c
(21)

is the dimensionless melt parameter.
The dimensionless boundary and initial conditions are

ĥ1(x̂ = 0, t̂)3/2 = F 2/3 (22)

and
ĥ(x̂, t̂ = 0) = 1. (23)

The dimensionless intrusion length, denoted ℓ̂(t̂), is determined by the condition that

ĥ = ĥ1 at x̂ = −ℓ̂(t̂). The final intrusion length, which is shown in figures 3–4 of the

main text, is L = limt̂→∞ ℓ̂.

1.4 Model simplifications and assumptions

In this section, we explicitly set out the simplifications and assumptions made in the
model derivation, and briefly describe their impact on the behaviour of intrusions and
on our results.

• Flowline model: The layered intrusion model of [1, 2] is effectively a flowline
model, with the behaviour in the lateral (along grounding zone) direction (into the
page in figure 1) parametrized by an effective drag coefficient. As mentioned in
the main text, the boundary between bounded and unbounded intrusions is rela-
tively insensitive to the value of this parameter, providing support for our use of a
two-dimensional model. In practice, lateral heterogeneities in grounding-zone char-
acteristics (e.g. subglacial hydrology and bed slope) and complex flow characteristics
within ice shelf cavities (e.g. coriolis forces and bathymetric features) may lead to
significant seawater intrusion at some parts of the ice-ocean interface but not oth-
ers. High-resolution three-dimensional models of grounding zones are required to
probe these effects in detail. In addition, incorporating a third-dimension into any
eventual coupling with an ice-sheet will increase stability of the ice-sheet model, in
general [8].

• Ice velocity: In our model, we assume a constant ice velocity V , which is reasonable
since ice velocities typically vary on long (O(10s of kms)) lengthscales, relative to
the intrusion length. It is important to note however, that ice velocity may act
as a stabilizing mechanism on intrusion: an increase in grounding-zone melting (as
a result of, for example, passing the bounded-unbounded intrusion tipping point)
would be expected to result in ice acceleration, thereby effectively reducing the value
of the parameter M and potentially stabilizing the intrusion. However, investigating
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this mechanism in detail requires the use of a coupled model, which includes (at
least) both ice and subglacial hydrology components. This study provides strong
motivation for the development of such models.

• Tides: Characteristics of grounding zones can vary significantly on tidal timescales,
as the tidal-flexure of ice shelves changes the geometry [9, 10, for example] and ocean
conditions in grounding zones [11–13, for example]. The magnitude of tidal influence
on grounding zones is not uniform, but can vary significantly, both within, and
between different, ice shelves, and depending on the specific characteristics of the
region [9]. Our model does not include tides: the timescale on which ice and ocean
conditions respond to tides (O(hours)) is typically much shorter than the timescale
relevant to subglacial flow (O(days)); as such, our model can be considered to be
an average over the tidal cycle, with the grounding line slope and ocean conditions
at their average value (note that the datasets used herein also reflect long term
averages and can therefore also be considered as averages over the tidal cycle).
Future work should consider the effect of tidal variations on seawater intrusions,
and, in particular, seek to understand whether variations on the tidal timescale
might integrate to a non-trivial effect on the longer timescale considered here. In
section 3, we describe the results of a simple investigation into the effect of tides
on seawater intrusion, in which tidal flexure modifies the boundary layer velocity
uniformly through the channel on a tidal timescale. We find that for relatively small
tidal velocity amplitudes (with respect to the upstream flow velocity), the behaviour
is essentially the same as the no tides case, with the intrusion distance oscillating
around the no-tide value on the tidal timescale. However, for relatively large tidal
velocity amplitudes, tidal velocity fluctuations dominate, and result in increased
intrusion over the no tides case. Importantly, we find that including tides in this
way only enhances intrusion, i.e. makes the mechanism of grounding zone melting
stronger. In addition, the tipping-point behaviour still exists, but the location of
the bounded-unbounded intrusion boundary is modulated by the amplitude of tidal
oscillations.

• Constant Bed Slope: The layered intrusion model assumes that the bedslope θ
is constant. This is reasonable provided that the intrusion length is shorter than
the lengthscale on which the bed changes significantly. On longer lengthscales, bed
variations may act to suppress or promote intrusion: bedslopes with negative slope
gradients (dθ/dx < 0) will promote intrusion, while bedslopes with negative slope
gradients (dθ/dx < 0) will suppress intrusion.

• Constant layer temperatures:We assume that both warm and cold layers remain
at their constant inflow temperatures, with no entrainment between the two layers
and no freshwater input into the cold water layer. Our melt model, which consid-
ers the cross layer averaged temperature as that appropriate for melting, is a proxy
for temperature mixing between the two layers, and, as discussed above, melt input
into the channel is relatively small compared with channel through flow, justify-
ing this assumption. Energy is provided to the system via the warm layer, with
increasing amounts of energy required to sustain the melting provided by increas-
ing warm water content via channel widening. It can be shown that relatively little
energy provided by the warm layer is actually used for melting, further justifying

7
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the assumption of a constant warm layer: the total heat flux into the cavity can
be estimated as Q = cρV∆T , where V is the volume flux of fluid (per unit width
in the along grounding line direction) and other variables are as defined above. If
all of this heat were used for melting, it would produce a melt flux on the order of
Q/(Lρ) = cV∆T/L. This can be compared with the channel integrated melt flux,
which scales with Stcu∗∆TL/H, where L is the intrusion length. The ratio of these
is H/(LSt) is on the order of 5 for a kilometer length intrusion (for which the chan-
nel width is on the order of 1 m, see figure 2 of the main text), i.e. there is typically
much more heat available than that which is utilised for melting. This suggests that
relatively little heat is lost to melting, justifying our use of a constant warm layer.
We note however, that as the intrusion length L goes to infinity, this ratio decreases
(the channel thickness H will increase to counter this, but this widening is also
bounded). We thus expect that the warm water layer temperature would reduce as
the intrusion length goes to infinity, potentially stabilizing the intrusion.

2 Steady intrusion length

In this section, we describe the procedure for determining the steady intrusion length
L. Note that in this section, all variables are assumed dimensionless and hats are
dropped.

2.1 Steady intrusion problem

To determine the steady intrusion length L for a given set of parameters (F, C, S, M),
we consider the steady form of the coupled layered intrusion-melt equations (19)–(20),
which read (

F 2

h3
1

− 1

)
∂h1

∂x
=

F 2

h3
1

(
1 + C

h

h− h1

)
−
(
S +

∂h

∂x

)
, (24)

1

M

∂h

∂x
=

1

h1

(
1− h1

h

)
. (25)

If a steady solution with a bounded intrusion exists, it will necessarily have h = h1 = 1
at x = L and h1 = F 2/3 at x = 0.

The idea is as follows: we begin by specifying an arbitrary finite interval [xl, xu],
where xu − xl ≫ 1 and then integrate (24)–(25) forwards in x from x = xl towards
x = xu. Should the solution reach the sub-supercritical transition threshold (22) at a
point x = xs ∈ [xl, xu], then the steady intrusion length is L = xs − xl. However, if
the solution does not reach (22), there is no steady solution with a bounded intrusion
length. The specific values xu and xl are arbitrary because the problem (24)–(25) is
translationally invariant. In the results shown here, we take xu − xl = 105.

To avoid a singularity in the interfacial drag term that appears in the momentum
equation (25) at the nose of the intrusion (where h1 = h), we integrate (24)–(25) using

8
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a perturbed initial condition, based on an asymptotic expansion of the local solution,

h = 1 +
2M

3

(
2CF 2

1− F 2

)1/2

x3/2
ϵ , (26)

h1 = 1−
(

2CF 2

1− F 2

)1/2

x1/2
ϵ , (27)

at x = xl + xϵ where xϵ ≪ 1 (in the results shown here and in the main text, we used
xϵ = 10−3, but found that results are insensitive to this value provided that xϵ ≪ 1).

In supplementary figure 2, we show the solution to (24)-(27) using the parameter
values used to generate figure 2 of the main text and xl = 105). This demonstrates
the procedure: for the smaller value of M (M = 0.27, left panels in figure 2), the
solution h1 decreases monotonically from h1 = 1 at x = xl to h1 = F 2/3, which is
attained at x = xs ≈ 4. Thus, this parameter set corresponds to a bounded intrusion,
with a dimensional intrusion length of approximately 110m. For the larger value of M
(M = 0.3, right panels in figure 2), h1 initially decreases (inset in figure 2b) before
reaching a local minimum at a value larger than F 2/3 and increasing monotonically
thereafter. The termination value h1 = F 2/3 is never attained.

This behaviour is generic: for M < Mc, the solution for h1 always heads mono-
tonically towards h1 = F 2/3, attaining it in a finite distance, while for M > Mc,
the solution attains a local minimum beyond which it increases without bound. It is
possible to show – although it does not provide insight and is therefore not included
here – that any solution of (24)–(25) has a unique local minimum and thus, if a local
minimum with h1 > F 2/3 is attained, the solution will never attain h1 = F 2/3. This
confirms that for M > Mc, no bounded, steady intrusion exists.

Note that if a steady intrusion length exsits, once the steady problem (24)–(25)
has been solved numerically, the cold layer thickness h1 and channel thickness h are
known. The dimensionless melt rate can then be determined as 1/h1(1 − h1/h) (see
equation (20)), and the dimensional melt rate reproduced by undoing the scalings
of (18). This may form the basis for a parametrization of grounding zone melting, but
we stress that it is only valid in the bounded intrusion regime.

2.2 Bisection algorithm for Mc

To determine the critical melt parameter Mc shown as the boundary between green
and blue sections of figure 3 of the main text, we apply a bisection method. For a given
(F, S,C), we first specify an upper Mu

c and lower M l
c bound on Mc, determined as any

value which result in unbounded and bounded intrusion, respectively. We then apply a
standard bisection procedure: at each step, we take a candidate melt parameter as the
mean of the current upper and lower bound value. The steady equations (24)–(25) are
then solved using this value of M ; if this value corresponds to unbounded (bounded,
respectively) intrusion, it replaces the upper (lower) bound. This procedure is repeated
until the difference between the upper and lower bounds is below a predetermined
threshold (in those results shown here, this is 10-3). Examples of the solutions h1

generated during this procedure are shown in supplementary figure 3a.
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The same procedure outlined in this section is applied to determine the critical
slope Sc and critical Froude number Fc (noting that unbounded intrusion occurs for
F < Fc and thus the bisection algorithm must be adjusted accordingly). Examples of
the h1 generated during this procedure are shown in supplementary figure 3b (for Sc)
and figure 3c (for Fc).

3 Investigating tidal influences on seawater intrusion

As an ice shelf cavity opens in response to tidal flexure, water will invade the newly-
opened cavity and as the cavity closes, water will be evacuated. Given that tidal
grounding line migrations may be on the order of kilometers [10], and tidal cycles are
diurnal, this may result in rapid inflow and outflow of water into the cavity. Such
high flow speeds have the potential to significantly affect the intrusion mechanism of
interest here because flow speeds directly enter into the melt rate model (10).

The precise dynamics of such tidal flushing are poorly constrained. However, a
simple way to investigate their effect on the seawater intrusion model considered here
is to modify the boundary layer velocity appropriate for melting (equation (10)) to
introduce a tidal component, i.e. setting

u∗ =

∣∣∣∣u1 + UT sin

(
2πt

τS

)
sin

(
2πt

τL

)∣∣∣∣ , (28)

where UT is the amplitude of the tidal velocity signal, τS = 12 hours is the solar
tidal period, τL = 28 days is the lunar tidal period (supplementary figure 10a), and |.|
represents the absolute value. The dimensionless tidal component of the forcing (28),
sin (2πt/τL) sin (2πt/τS), is shown in figure 10a.

With a boundary layer velocity given by (28), the dimensionless coupled layered
intrusion-melt equations become(

F 2

h3
1

− 1

)
∂h1

∂x
=

F 2

h3
1

(
1 + C

h

h− h1

)
−
(
S +

∂h

∂x

)
, (29)

1

M

∂h

∂x
=

∣∣∣∣ UT

U∞
sin

(
2πt

τL

)
sin

(
2πt

τS

)
+

1

h1

∣∣∣∣ (1− h1

h

)
, (30)

with h1 = F 2/3 at x = 0 and h = h1 = 1 at x = ℓ(t) as before.
Figure 10b shows the intrusion distance ℓ(t) as a function of time (i.e. as in figure

2a, e of the main text) for different values of the tidal velocity, obtained by solving the
coupled equations (29)–(30). We see that for tidal velocity amplitudes that are small
relative to the far field velocity, UT/U∞ ≪ 1, the tidal influence is small and the system
behaves as described in the main text for no tidal forcing. The tidal forcing component
simply introduces oscillations about the ‘no-tide’ solution, on the tidal timescales.
However, for relatively large tidal velocity amplitudes, UT/U∞ ≫ 1, the tidal signal
dominates, demonstrating significantly enhanced intrusion distances compared to the
case with no tidal influence.
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It is possible to demonstrate that, even with the parametrization of tidal influence
described above, the system displays the same tipping point like behaviour described
in the main text for no tidal signal. In the no-tidal forcing case (section 2), we described
how anaylsis of the steady form of the governing equations can be used to determine
where in parameter space the tipping point occurs. With tidal forcing, however, no
true steady state exists because the forcing is time-dependent. An approximation to
the steady behaviour can be obtained by considering the large tidal amplitude limit,
UT/U∞ ≫ 1, and the average over the monthly tidal cycle. This is equivalent to
replacing (28) by

u∗ = λUT , (31)

where λ ≈ 0.405 is the average of the function | sin (2πt/τS) sin (2πt/τL) | over a
monthly cycle. This is reasonable because the timescale on which the ice geometry
responds to melting is relatively long compared to the timescale on which the tidal
forcing varies. Figure 10b shows that this approximation works well (the red curve
agrees fairly well with the yellow curves), although fails to capture short timescale
oscillations, as is to be expected.

With a boundary layer velocity as given by (31), the steady form of the
dimensionless coupled layered intrusion-melt equations read(

F 2

h3
1

− 1

)
∂h1

∂x
=

F 2

h3
1

(
1 + C

h

h− h1

)
−
(
S +

∂h

∂x

)
, (32)

1

M

∂h

∂x
=

λUT

U∞

(
1− h1

h

)
. (33)

We find that, as in the case of no tidal velocity, the tipping point exists and is generic:
for any hydrological network efficiency F , the intrusion length increases with the melt
parameter M and there is a critical M above which the intrusion becomes unbounded.
Figure 10c shows the bounded-unbounded intrusion length transition for different
values of UT /U∞ in the case UT /U∞ ≫ 1. The data shown in this figure are obtained as
described in section 2, but using the steady equations (32)–(33). The effect of the tidal
velocity is to modify the location of the boundary between bounded and unbounded
intrusions, with higher tidal velocities corresponding to a higher susceptibility to the
unbounded regime.

4 Supplementary figures
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Supplementary Figure 6 Histograms of grounding line velocity for key Antarctic ice-
shelves. In each panel, the black dashed line indicates the median of the data showed therein.
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Supplementary Figure 7 Critical dimensionless slope for intrusion. Map of Sc as a function
of dimensionless hydrological network efficiency F and melt parameter M .
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Supplementary Figure 8 Slope dependence of intrusion. Plots of time-dependent intrusion
distance (i.e. that obtained by evolving from a configuration with initially parallel channel walls, as
shown in figure 2a,e of the main text) for different basal slopes (tan θ), as labelled. Other parameters
used to generate this plot correspond to the bounded intrusion case in figure 2 (which considers no
slope), i.e. F = 0.25 and C = 0.1.
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Supplementary Figure 9 Grounding line and ice front locations on key Antarctic ice
shelves. Plots of ice velocity (colours) alongside locations of grounding line (red) and ice front (black)
points for ice shelves considered in this study, as follows: (a) Pine Island Glacier, (b) Ross, (c) Ronne,
(d) Amery, (e) Filchner, (f) Larsen, (g) Getz, (h) Pope, Smith, and Kohler, and (i) Thwaites. The
inset in (a) shows the grounding line points alongside grounding line velocity vectors for the section
within the box in the main panel. In each panel, the number n indicates the number of grounding
line points included in the corresponding shelf.
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Supplementary Figure 10 Tidal modulation of seawater intrusions. (a) Dimensionless tidal
velocity sin(2πt/τL) sin(2πt/τS) as a function of time. (b) Intrusion length ℓ(t) as a function of time
(i.e. not the final intrusion length, but as in figure 2a, e of the main text) for different values of the
reduced tidal velocity UT /U∞ as indicated by the colourbar. Data here are shown in dimensional
form to allow comparison with figure 2 of the main text. For each value of UT /U∞, results are shown
for the two cases shown in figure 2 of the main text, with ∆T = 2.3◦C (dashed lines) and ∆T = 2.5◦C
(solid lines). Black solid and dashed curves show results obtained with no tides, i.e. as shown in
figure 2 of the main text. Note that the curves corresponding to UT /U∞ ≲ 0.5 are indistinguishable
from the black curves. The red curve indicates the intrusion length for the approximate case, where
the boundary layer velocity is given by the average over a monthly cycle (equation (31)). Other
parameters are as in figure 2 of the main text. (c) Coloured contours show the boundary between
bounded and unbounded intrusions for different values of UT /U∞ as labelled. Labels ‘bounded’ and
zunbounded’ indicate which side of the line corresponds to bounded and unbounded intrusions for
the UT /U∞ = 10 case. The black dashed contour indicates the ‘C = 0.1’ of figure 3 of the main text,
corresponding to no tidal influence.
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